Poster: An Automated and Instant Discovery of Concrete Repairs
for Model Inconsistencies

Roland Kretschmer, Djamel Eddine Khelladi, Alexander Egyed
Johannes Kepler University Linz
Linz, Austria
<firstName.lastName>@jku.at

ABSTRACT

Developers change software models continuously but often fail in
keeping them consistent. Inconsistencies caused by such changes
need to be repaired eventually. While we found that usually few
model elements need to be repaired for any given inconsistency,
there are many possible repair values for any given model element.
To make matters worse, model elements need to be repaired in
combination. The result is a large and exponentially growing repair
space. In this paper we present an approach towards grouping alike
repair values if they have the same effect to provide example-like
feedback for developers. A preliminary evaluation shows that our
approach can more scalably explore the repair space.

CCS CONCEPTS

« Software and its engineering — Model-driven software en-
gineering;

KEYWORDS

concrete repair, abstract repair, model inconsistencies, model repair,
concrete values

ACM Reference Format:

Roland Kretschmer, Djamel Eddine Khelladi, Alexander Egyed. 2018. Poster:
An Automated and Instant Discovery of Concrete Repairs for Model Incon-
sistencies. In ICSE ’18 Companion: 40th International Conference on Software
Engineering Companion, May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3183440.3194979

1 INTRODUCTION

Model-Driven Engineering (MDE) has shown to be effective and
beneficial in the development and maintenance of large scale and
embedded systems [Hutchinson et al. 2011; Liebel et al. 2014]. These
benefits, however, hinge on the models being consistent. This is a
problem when changes happen. Changes may cause inconsistencies
if the changes are wrong and/or incompatible. Once models are
inconsistent, all reasoning with them is untrustworthy and likely
even causes additional errors. Therefore, inconsistencies must at
least be known to developers. Hence they must not only be detected
timely but ultimately be repaired [Demuth et al. 2016; Frakes and
Kang 2005; Whittle et al. 2014].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5663-3/18/05.

https://doi.org/10.1145/3183440.3194979

e [1] [2] | se=013) |3
I se;, ={'a’,'c
se; = {1,2,3} se; = {objy,
€1 + se, ={'a') b c"} ~ objs}
ses = {objy, objs, [_‘ _"V Y 'A E_,\ True values set
e, se; 0bjs} [| T |7 se =123
&\ Automated 56 = {’b’}
Validation tree and discovery of sez = {obj,}

se; 5e) concrete values valid values False values set

Figure 1: Overall approach.

A repair is a set of one ore more model changes that together
resolve a given inconsistency. Literature distinguishes abstract and
concrete repairs [Jackson 2002; Mens et al. 2006; Nentwich et al.
2001, 2003; Reder and Egyed 2012; Xiong et al. 2009]. An abstract
repair identifies the model element(s) to repair (the location(s) in
model) but does not reveal how to change the model elements.
Abstract repairs are easily computed. A concrete repair identifies
how to change the model element with a concrete value. A concrete
repair, in contrast to an abstract repair, can thus be executed on the
inconsistent model.

Computing concrete repairs by exploring all possible concrete
values is an exponential problem, because there are many concrete
repairs per abstract repair and we must consider concrete repairs
in combination. So if there are n model elements and m concrete
values for each model element to repair then we need to explore
m™ combinations. All of these must be explored to check which
ones are indeed capable of fixing the inconsistency.

When multiple values are combined to form concrete repairs,
one invalid value would result in many invalid combinations (i.e.,
incorrect concrete repairs). Moreover, even valid values on their
own may contradict each other when combined.

This paper proposes a novel approach that combines similar sets
of concrete values to find valid combinations of values which can
repair given inconsistencies automatically. The concrete repairs are
similar if they affect the cause of the inconsistencies alike [Reder
and Egyed 2013].

2 APPROACH

Our approach separates possible values for fixing inconsistencies
into two sets, one with invalid values and one with valid values
for all model elements that could be changed to repair a given
inconsistency. This process is depicted in Figure 1.

The first stage () checks fo inconsistencies in a model based
on provided consistency rules. For each inconsistency a validation
tree is constructed [Reder and Egyed 2013]. The validation tree
identifies all model elements involved (leaves) and shows how their
values cause the inconsistency. Every validation tree consists of

https://doi.org/10.1145/3183440.3194979
https://doi.org/10.1145/3183440.3194979

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

T: age={25,53}
salary={800,1600}

F: age={3,8}

T: age={25,53} 5 salary={20,300}

F: age=(3.8} /—‘)A/ T: salary={800,1600]
/ F: salary—{20,300}

p. age

e

r

p. salary 699
O
p.age—{3,8,25,53} p.salary={20,300,800,1600}

Figure 2: Validation Tree for Consistency Rule.

expressions which in turn can have sub-expressions. The leaves in
a validation tree are specific model elements or constant values and
contribute to the computation and detection of the inconsistency.
Note that by just identifying an inconsistency with its validation
tree, it is not clear how to repair it. However, all model elements
causing the inconsistency are identified.

For example consider Figure 2, which shows the validation tree
for the consistency rule self.age > 17 and self.salary > 699. Let us
assume that the p.age is below 18 and the p.salary is also below
700 which leads to an inconsistency. Here (e,) represents the root
expression which every validation tree has to have. The next ex-
pression is the AND (A) expression which consists of a left and
right hand side sub tree. On the left hand side we have the greater
than expression (>) which checks if p. age (expression representing
the model element’s p value for its property age) is indeed larger
than 17 (17 is a constant value defined by the rule itself). In the
right hand side sub tree the same is done for the salary of a model
element (p.salary).

The second stage () suggests values for changing the individual
model elements that cause the inconsistency. Some of these values
may fix those inconsistencies most do not. There are several possible
sources for those values (values from the model itself [Egyed et al.
2008; Kretschmer et al. 2017], and probabilistic generated values
[Hegediis et al. 2011; Xiong et al. 2009]).

This is shown in Figure 2. Assume we have values for p. age={3,
8, 25, 53} and p. salary={20, 300, 800, 1600} provided by one of the
approaches mentioned above (denoted by an arrow labeled with 1).

The third stage () starts at the leaf expressions in the validation
tree. For each expression, there is a true and a false set. These
sets are then recursively combined to higher level expressions and
their true and false sets until the root is reached.

This process is shown in Figure 2. From the previous stage we
got possible values for p.age and p. salary (arrow denoted with
1). From this values sets we determine which value is able to satisfy
the condition given in the consistency rules (the two greater than
expressions denoted with 2). At the greater then expressions we are
able to construct the corresponding true and false sets (denoted
with 3) and at the AND expression we combine the sets from the
two subtrees into one true and one false set (denoted with 5).
Finally, the values in the true set at the root expression e, can be
used to form concrete repairs that can be executed automatically
on the inconsistent model.

Roland Kretschmer, Djamel Eddine Khelladi, Alexander Egyed

Please note that for simplicity we chose to use simple numbers
to illustrate our approach. However, complex values like classes,
packages, model element attributes, etc. are supported.

3 CONCLUSION AND FUTURE WORK

This paper presented a novel approach for discovering and val-
idating values for repairing inconsistencies automatically to get
relevant concrete repairs for those model inconsistencies.

For future work, we plan to validate our approach on models
from industry and academia. Furthermore we plan to further group
valid values based on different criteria. We also plan to consider
constraints on the valid values to further reduce the size of the true
set (e.g. among positive integers consider only odd values). Finally,
as alternative repairs are proposed per inconsistency, we plan to
provide ranking heuristics to support the developers in choosing
repairs.

ACKNOWLEDGMENTS

This research was funded by the Austrian Science Fund (FWF): P
25513-N15

REFERENCES

Andreas Demuth, Roland Kretschmer, Alexander Egyed, and Davy Maes. 2016. Intro-
ducing Traceability and Consistency Checking for Change Impact Analysis across
Engineering Tools in an Automation Solution Company: An Experience Report. In
Software Maintenance and Evolution (ICSME), 2016 IEEE International Conference on.
IEEE, 529-538.

Alexander Egyed, Emmanuel Letier, and Anthony Finkelstein. 2008. Generating and
Evaluating Choices for Fixing Inconsistencies in UML Design Models. In ASE.
99-108. https://doi.org/10.1109/ASE.2008.20

William B Frakes and Kyo Kang. 2005. Software reuse research: Status and future. IEEE
transactions on Software Engineering 31, 7 (2005), 529-536.

Abel Hegediis, Akos Horvath, Istvan Rath, Moisés Castelo Branco, and Daniel Varré.
2011. Quick fix generation for DSMLs. In VL/HCC. 17-24. https://doi.org/10.1109/
VLHCC.2011.6070373

John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. 2011.
Empirical assessment of MDE in industry. In Proceedings of the 33rd International
Conference on Software Engineering. ACM, 471-480.

Daniel Jackson. 2002. Alloy: a lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol. 11, 2 (2002), 256-290. https://doi.org/10.1145/505145.505149

Roland Kretschmer, Djamel Eddine Khelladi, and Alexander Egyed. 2017. From Abstract
to Concrete Repairs of Model Inconsistencies: an Automated Approach. APSEC
(2017).

Grischa Liebel, Nadja Marko, Matthias Tichy, Andrea Leitner, and Jorgen Hansson.
2014. Assessing the state-of-practice of model-based engineering in the embedded
systems domain. In Model-Driven Engineering Languages and Systems. Springer,
166-182.

Tom Mens, Ragnhild Van Der Straeten, and Maja D?Hondt. 2006. Detecting and
resolving model inconsistencies using transformation dependency analysis. In In-
ternational Conference on Model Driven Engineering Languages and Systems. Springer,
200-214.

Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. 2001. Static
Consistency Checking for Distributed Specifications. In ASE. 115. https://doi.org/
10.1109/ASE.2001.989797

Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein. 2003. Consis-
tency Management with Repair Actions. In ICSE. 455-464. http://computer.org/
proceedings/icse/1877/18770455abs.htm

Alexander Reder and Alexander Egyed. 2012. Incremental Consistency Checking for
Complex Design Rules and Larger Model Changes. In MODELS. 202-218. https:
//doi.org/10.1007/978-3-642-33666-9_14

Alexander Reder and Alexander Egyed. 2013. Determining the Cause of a Design
Model Inconsistency. IEEE Trans. Software Eng. 39, 11 (2013), 1531-1548. https:
//doi.org/10.1109/TSE.2013.30

Jon Whittle, John Hutchinson, and Mark Rouncefield. 2014. The state of practice in
model-driven engineering. IEEE software 31, 3 (2014), 79-85.

Yingfei Xiong, Zhenjiang Hu, Haiyan Zhao, Hui Song, Masato Takeichi, and Hong
Mei. 2009. Supporting automatic model inconsistency fixing. In ESEC FSE. 315-324.
https://doi.org/10.1145/1595696.1595757

https://doi.org/10.1109/ASE.2008.20
https://doi.org/10.1109/VLHCC.2011.6070373
https://doi.org/10.1109/VLHCC.2011.6070373
https://doi.org/10.1145/505145.505149
https://doi.org/10.1109/ASE.2001.989797
https://doi.org/10.1109/ASE.2001.989797
http://computer.org/proceedings/icse/1877/18770455abs.htm
http://computer.org/proceedings/icse/1877/18770455abs.htm
https://doi.org/10.1007/978-3-642-33666-9_14
https://doi.org/10.1007/978-3-642-33666-9_14
https://doi.org/10.1109/TSE.2013.30
https://doi.org/10.1109/TSE.2013.30
https://doi.org/10.1145/1595696.1595757

	Abstract
	1 Introduction
	2 Approach
	3 Conclusion and Future Work
	Acknowledgments
	References

